Search results for " Molecular Beam Epitaxy"

showing 4 items of 4 documents

Splitting of surface-related phonons in Raman spectra of self-assembled GaN nanowires

2012

cited By 2; International audience; Micro Raman spectroscopy studies have been performed on GaN nanowires grown by Plasma-Assisted Molecular Beam Epitaxy on Silicon (111) substrate. From the analysis of experimental data, the emergence of a two peaks band located near 700 cm-1 has been attributed to the Raman scattering by surface-related phonons. We have analyzed the surface character of these two modes by changing the dielectric constant of the exterior medium and some experimental parameters. Furthermore, a theoretical model describing the nanowires ensemble by means of an effective dielectric function has been used to interpret the Raman scattering results. Those numerical simulations a…

Experimental parametersRaman scatteringMaterials sciencePhononNanowireGallium nitride02 engineering and technologyDielectricDielectric functions01 natural sciencessymbols.namesakechemistry.chemical_compoundCondensed Matter::Materials ScienceExperimental observation0103 physical sciencesTheoretical models010302 applied physicsSilicon (111) substrates[PHYS]Physics [physics]Condensed matter physicsNanowiresSurface phononGallium nitride021001 nanoscience & nanotechnologyCondensed Matter PhysicschemistryDielectric propertiesRaman spectroscopysymbolsPhononsPlasma-assisted molecular beam epitaxyMicro Raman Spectroscopy0210 nano-technologyRaman spectroscopyMolecular beam epitaxyRaman scatteringSurface phononMolecular beam epitaxy
researchProduct

Multiexciton complex from extrinsic centers in AlGaAs epilayers on Ge and Si substrates

2013

The multiexciton properties of extrinsic centers from AlGaAs layers on Ge and Si substrates are addressed. The two photon cascade is found both in steady state and in time resolved experiments. Polarization analysis of the photoluminescence provides clearcut attribution to neutral biexciton complexes. Our findings demonstrate the prospect of exploiting extrinsic centers for generating entangled photon pairs on a Si based device. © 2013 AIP Publishing LLC.

GaAs Molecular Beam Epitaxy quantum nanostructures photoluminescenceMaterials sciencePhotoluminescencePhotonbusiness.industryQuantum dotsGeneral Physics and AstronomySemiconductorPolarization (waves)Gallium arsenidechemistry.chemical_compoundSemiconductorchemistryQuantum dotOptoelectronicsbusinessBiexcitonSingle photonsMolecular beam epitaxy
researchProduct

Initial stages of self-assembled InAs/InP(001) quantum wire formation

2007

4 páginas, 2 figuras.-- PACS codes: 78.67.Lt; 68.65.La; 68.37.Ps.-- Comunicación oral presentada a la 14ª International Conference on Molecular Beam Epitaxy - MBE XIV celebrada en Tokio (Japón) del 3 al 8 de Septiembre de 2006.

NanostructureMaterials scienceReflection high-energy electron diffractionCondensed matter physicsQuantum wireA3. Molecular beam epitaxyRelaxation (NMR)NucleationB2. Semiconducting indium phosphideCondensed Matter PhysicsA1. NucleationInorganic ChemistryReflection (mathematics)Electron diffractionA1. NanostructuresMaterials ChemistryMolecular beam epitaxyJournal of Crystal Growth
researchProduct

Optical characterization of individual GaAs quantum dots grown with height control technique

2013

We show that the epitaxial growth of height-controlled GaAs quantum dots, leading to the reduction of the inhomogeneous emission bandwidth, produces individual nanostructures of peculiar morphology. Besides the height controlled quantum dots, we observe nanodisks formation. Exploiting time resolved and spatially resolved photoluminescence we establish the decoupling between quantum dots and nanodisks and demonstrate the high optical properties of the individual quantum dots, despite the processing steps needed for height control. © 2013 AIP Publishing LLC.

PhotoluminescenceMaterials scienceNanostructureGaAs Molecular Beam Epitaxy quantum nanostructures photoluminescencebusiness.industrySpatially resolvedGeneral Physics and AstronomyDecoupling (cosmology)EpitaxyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectGallium arsenidechemistry.chemical_compoundCondensed Matter::Materials SciencechemistryQuantum dot laserQuantum dotFISICA APLICADAOptoelectronicsbusinessFIS/03 - FISICA DELLA MATERIAEpitaxy
researchProduct