Search results for " Molecular Beam Epitaxy"
showing 4 items of 4 documents
Splitting of surface-related phonons in Raman spectra of self-assembled GaN nanowires
2012
cited By 2; International audience; Micro Raman spectroscopy studies have been performed on GaN nanowires grown by Plasma-Assisted Molecular Beam Epitaxy on Silicon (111) substrate. From the analysis of experimental data, the emergence of a two peaks band located near 700 cm-1 has been attributed to the Raman scattering by surface-related phonons. We have analyzed the surface character of these two modes by changing the dielectric constant of the exterior medium and some experimental parameters. Furthermore, a theoretical model describing the nanowires ensemble by means of an effective dielectric function has been used to interpret the Raman scattering results. Those numerical simulations a…
Multiexciton complex from extrinsic centers in AlGaAs epilayers on Ge and Si substrates
2013
The multiexciton properties of extrinsic centers from AlGaAs layers on Ge and Si substrates are addressed. The two photon cascade is found both in steady state and in time resolved experiments. Polarization analysis of the photoluminescence provides clearcut attribution to neutral biexciton complexes. Our findings demonstrate the prospect of exploiting extrinsic centers for generating entangled photon pairs on a Si based device. © 2013 AIP Publishing LLC.
Initial stages of self-assembled InAs/InP(001) quantum wire formation
2007
4 páginas, 2 figuras.-- PACS codes: 78.67.Lt; 68.65.La; 68.37.Ps.-- Comunicación oral presentada a la 14ª International Conference on Molecular Beam Epitaxy - MBE XIV celebrada en Tokio (Japón) del 3 al 8 de Septiembre de 2006.
Optical characterization of individual GaAs quantum dots grown with height control technique
2013
We show that the epitaxial growth of height-controlled GaAs quantum dots, leading to the reduction of the inhomogeneous emission bandwidth, produces individual nanostructures of peculiar morphology. Besides the height controlled quantum dots, we observe nanodisks formation. Exploiting time resolved and spatially resolved photoluminescence we establish the decoupling between quantum dots and nanodisks and demonstrate the high optical properties of the individual quantum dots, despite the processing steps needed for height control. © 2013 AIP Publishing LLC.